Leveraging Deep Neural Network Activation Entropy to cope with Unseen Data in Speech Recognition

31 Aug 2017 Vikramjit Mitra Horacio Franco

Unseen data conditions can inflict serious performance degradation on systems relying on supervised machine learning algorithms. Because data can often be unseen, and because traditional machine learning algorithms are trained in a supervised manner, unsupervised adaptation techniques must be used to adapt the model to the unseen data conditions... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet