Leveraging Legacy Data to Accelerate Materials Design via Preference Learning

25 Oct 2019  ·  Xiaolin Sun, Zhufeng Hou, Masato Sumita, Shinsuke Ishihara, Ryo Tamura, Koji Tsuda ·

Machine learning applications in materials science are often hampered by shortage of experimental data. Integration with legacy data from past experiments is a viable way to solve the problem, but complex calibration is often necessary to use the data obtained under different conditions. In this paper, we present a novel calibration-free strategy to enhance the performance of Bayesian optimization with preference learning. The entire learning process is solely based on pairwise comparison of quantities (i.e., higher or lower) in the same dataset, and experimental design can be done without comparing quantities in different datasets. We demonstrate that Bayesian optimization is significantly enhanced via addition of legacy data for organic molecules and inorganic solid-state materials.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here