Leveraging Long-Term Predictions and Online-Learning in Agent-based Multiple Person Tracking

10 Feb 2014  ·  Wenxi Liu, Antoni B. Chan, Rynson W. H. Lau, Dinesh Manocha ·

We present a multiple-person tracking algorithm, based on combining particle filters and RVO, an agent-based crowd model that infers collision-free velocities so as to predict pedestrian's motion. In addition to position and velocity, our tracking algorithm can estimate the internal goals (desired destination or desired velocity) of the tracked pedestrian in an online manner, thus removing the need to specify this information beforehand. Furthermore, we leverage the longer-term predictions of RVO by deriving a higher-order particle filter, which aggregates multiple predictions from different prior time steps. This yields a tracker that can recover from short-term occlusions and spurious noise in the appearance model. Experimental results show that our tracking algorithm is suitable for predicting pedestrians' behaviors online without needing scene priors or hand-annotated goal information, and improves tracking in real-world crowded scenes under low frame rates.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here