Lexical Normalization of User-Generated Medical Text

WS 2019  ·  Anne Dirkson, Suzan Verberne, Wessel Kraaij ·

In the medical domain, user-generated social media text is increasingly used as a valuable complementary knowledge source to scientific medical literature. The extraction of this knowledge is complicated by colloquial language use and misspellings. Yet, lexical normalization of such data has not been addressed properly. This paper presents an unsupervised, data-driven spelling correction module for medical social media. Our method outperforms state-of-the-art spelling correction and can detect mistakes with an F0.5 of 0.888. Additionally, we present a novel corpus for spelling mistake detection and correction on a medical patient forum.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here