In this paper we present LiDAR-Net a new real-scanned indoor point cloud dataset containing nearly 3.6 billion precisely point-level annotated points covering an expansive area of 30000m^2. It encompasses three prevalent daily environments including learning scenes working scenes and living scenes. LiDAR-Net is characterized by its non-uniform point distribution e.g. scanning holes and scanning lines. Additionally it meticulously records and annotates scanning anomalies including reflection noise and ghost. These anomalies stem from specular reflections on glass or metal as well as distortions due to moving persons. LiDAR-Net's realistic representation of non-uniform distribution and anomalies significantly enhances the training of deep learning models leading to improved generalization in practical applications. We thoroughly evaluate the performance of state-of-the-art algorithms on LiDAR-Net and provide a detailed analysis of the results. Crucially our research identifies several fundamental challenges in understanding indoor point clouds contributing essential insights to future explorations in this field. Our dataset can be found online: http://lidar-net.njumeta.com

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here