Lifted Rule Injection for Relation Embeddings

Methods based on representation learning currently hold the state-of-the-art in many natural language processing and knowledge base inference tasks. Yet, a major challenge is how to efficiently incorporate commonsense knowledge into such models. A recent approach regularizes relation and entity representations by propositionalization of first-order logic rules. However, propositionalization does not scale beyond domains with only few entities and rules. In this paper we present a highly efficient method for incorporating implication rules into distributed representations for automated knowledge base construction. We map entity-tuple embeddings into an approximately Boolean space and encourage a partial ordering over relation embeddings based on implication rules mined from WordNet. Surprisingly, we find that the strong restriction of the entity-tuple embedding space does not hurt the expressiveness of the model and even acts as a regularizer that improves generalization. By incorporating few commonsense rules, we achieve an increase of 2 percentage points mean average precision over a matrix factorization baseline, while observing a negligible increase in runtime.

PDF Abstract EMNLP 2016 PDF EMNLP 2016 Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here