Lifted Tree-Reweighted Variational Inference

17 Jun 2014Hung Hai BuiTuyen N. HuynhDavid Sontag

We analyze variational inference for highly symmetric graphical models such as those arising from first-order probabilistic models. We first show that for these graphical models, the tree-reweighted variational objective lends itself to a compact lifted formulation which can be solved much more efficiently than the standard TRW formulation for the ground graphical model... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.