Light-weight pixel context encoders for image inpainting

17 Jan 2018  ·  Nanne van Noord, Eric Postma ·

In this work we propose Pixel Content Encoders (PCE), a light-weight image inpainting model, capable of generating novel con-tent for large missing regions in images. Unlike previously presented convolutional neural network based models, our PCE model has an order of magnitude fewer trainable parameters. Moreover, by incorporating dilated convolutions we are able to preserve fine grained spatial information, achieving state-of-the-art performance on benchmark datasets of natural images and paintings. Besides image inpainting, we show that without changing the architecture, PCE can be used for image extrapolation, generating novel content beyond existing image boundaries.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here