Lightweight Lipschitz Margin Training for Certified Defense against Adversarial Examples

20 Nov 2018  ·  Hajime Ono, Tsubasa Takahashi, Kazuya Kakizaki ·

How can we make machine learning provably robust against adversarial examples in a scalable way? Since certified defense methods, which ensure $\epsilon$-robust, consume huge resources, they can only achieve small degree of robustness in practice. Lipschitz margin training (LMT) is a scalable certified defense, but it can also only achieve small robustness due to over-regularization. How can we make certified defense more efficiently? We present LC-LMT, a light weight Lipschitz margin training which solves the above problem. Our method has the following properties; (a) efficient: it can achieve $\epsilon$-robustness at early epoch, and (b) robust: it has a potential to get higher robustness than LMT. In the evaluation, we demonstrate the benefits of the proposed method. LC-LMT can achieve required robustness more than 30 epoch earlier than LMT in MNIST, and shows more than 90 $\%$ accuracy against both legitimate and adversarial inputs.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here