Lightweight Stochastic Video Prediction via Hybrid Warping

4 Dec 2024  ·  Kazuki Kotoyori, Shota Hirose, Heming Sun, Jiro Katto ·

Accurate video prediction by deep neural networks, especially for dynamic regions, is a challenging task in computer vision for critical applications such as autonomous driving, remote working, and telemedicine. Due to inherent uncertainties, existing prediction models often struggle with the complexity of motion dynamics and occlusions. In this paper, we propose a novel stochastic long-term video prediction model that focuses on dynamic regions by employing a hybrid warping strategy. By integrating frames generated through forward and backward warpings, our approach effectively compensates for the weaknesses of each technique, improving the prediction accuracy and realism of moving regions in videos while also addressing uncertainty by making stochastic predictions that account for various motions. Furthermore, considering real-time predictions, we introduce a MobileNet-based lightweight architecture into our model. Our model, called SVPHW, achieves state-of-the-art performance on two benchmark datasets.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here