Limit theorems for nearly unstable Hawkes processes

12 Mar 2015  ·  Jaisson Thibault, Rosenbaum Mathieu ·

Because of their tractability and their natural interpretations in term of market quantities, Hawkes processes are nowadays widely used in high-frequency finance. However, in practice, the statistical estimation results seem to show that very often, only nearly unstable Hawkes processes are able to fit the data properly... By nearly unstable, we mean that the $L^1$ norm of their kernel is close to unity. We study in this work such processes for which the stability condition is almost violated. Our main result states that after suitable rescaling, they asymptotically behave like integrated Cox-Ingersoll-Ross models. Thus, modeling financial order flows as nearly unstable Hawkes processes may be a good way to reproduce both their high and low frequency stylized facts. We then extend this result to the Hawkes-based price model introduced by Bacry et al. [Quant. Finance 13 (2013) 65-77]. We show that under a similar criticality condition, this process converges to a Heston model. Again, we recover well-known stylized facts of prices, both at the microstructure level and at the macroscopic scale. read more

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here