Line attractor dynamics in recurrent networks for sentiment classification

Recurrent neural networks (RNNs) are a powerful tool for modeling sequential data. Despite their widespread usage, understanding how RNNs solve complex problems remains elusive. Here, we characterize how popular RNN architectures perform document-level sentiment classification.Despite their theoretical capacity to implement complex, high-dimensional computations, we find that trained networks converge to highly interpretable, low-dimensional representations. We identify a simple mechanism, integration along an approximate line attractor, and find this mechanism present across RNN architectures (including LSTMs, GRUs, and vanilla RNNs). Overall, these results demonstrate that surprisingly universal and human interpretable computations can arise across a range of recurrent networks.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here