Linear Classification of Neural Manifolds with Correlated Variability

27 Nov 2022  ·  Albert J. Wakhloo, Tamara J. Sussman, SueYeon Chung ·

Understanding how the statistical and geometric properties of neural activity relate to performance is a key problem in theoretical neuroscience and deep learning. Here, we calculate how correlations between object representations affect the capacity, a measure of linear separability. We show that for spherical object manifolds, introducing correlations between centroids effectively pushes the spheres closer together, while introducing correlations between the axes effectively shrinks their radii, revealing a duality between correlations and geometry with respect to the problem of classification. We then apply our results to accurately estimate the capacity of deep network data.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here