Linear Convergence of Randomized Primal-Dual Coordinate Method for Large-scale Linear Constrained Convex Programming

ICML 2020  ·  Zhu Daoli, Zhao Lei ·

Linear constrained convex programming has many practical applications, including support vector machine and machine learning portfolio problems. We propose the randomized primal-dual coordinate (RPDC) method, a randomized coordinate extension of the first-order primal-dual method by Cohen and Zhu, 1984 and Zhao and Zhu, 2019, to solve linear constrained convex programming. We randomly choose a block of variables based on a uniform distribution, linearize, and apply a Bregman-like function (core function) to the selected block to obtain simple parallel primal-dual decomposition. We then establish almost surely convergence and expected O(1/t) convergence rate, and expected linear convergence under global strong metric subregularity. Finally, we discuss implementation details for the randomized primal-dual coordinate approach and present numerical experiments on support vector machine and machine learning portfolio problems to verify the linear convergence.

PDF Abstract ICML 2020 PDF
No code implementations yet. Submit your code now

Categories


Optimization and Control