Linear Convergence of SVRG in Statistical Estimation

7 Nov 2016  ·  Chao Qu, Yan Li, Huan Xu ·

SVRG and its variants are among the state of art optimization algorithms for large scale machine learning problems. It is well known that SVRG converges linearly when the objective function is strongly convex... However this setup can be restrictive, and does not include several important formulations such as Lasso, group Lasso, logistic regression, and some non-convex models including corrected Lasso and SCAD. In this paper, we prove that, for a class of statistical M-estimators covering examples mentioned above, SVRG solves the formulation with {\em a linear convergence rate} without strong convexity or even convexity. Our analysis makes use of {\em restricted strong convexity}, under which we show that SVRG converges linearly to the fundamental statistical precision of the model, i.e., the difference between true unknown parameter $\theta^*$ and the optimal solution $\hat{\theta}$ of the model. read more

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here