Paper

Linear Discriminant Generative Adversarial Networks

We develop a novel method for training of GANs for unsupervised and class conditional generation of images, called Linear Discriminant GAN (LD-GAN). The discriminator of an LD-GAN is trained to maximize the linear separability between distributions of hidden representations of generated and targeted samples, while the generator is updated based on the decision hyper-planes computed by performing LDA over the hidden representations... (read more)

Results in Papers With Code
(↓ scroll down to see all results)