Linear robust adaptive model predictive control: Computational complexity and conservatism -- extended version

11 Mar 2020 Köhler Johannes Andina Elisa Soloperto Raffaele Müller Matthias A. Allgöwer Frank

In this paper, we present a robust adaptive model predictive control (MPC) scheme for linear systems subject to parametric uncertainty and additive disturbances. The proposed approach provides a computationally efficient formulation with theoretical guarantees (constraint satisfaction and stability), while allowing for reduced conservatism and improved performance due to online parameter adaptation... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet