Linearly Constrained Smoothing Group Sparsity Solvers in Off-grid Model

17 Mar 2019  ·  Cheng-Yu Hung, Mostafa Kaveh ·

In compressed sensing, the sensing matrix is assumed perfectly known. However, there exists perturbation in the sensing matrix in reality due to sensor offsets or noise disturbance. Directions-of-arrival (DoA) estimation with off-grid effect satisfies this situation, and can be formulated into a (non)convex optimization problem with linear inequalities constraints, which can be solved by the interior point method (using the CVX tools), but at a large computational cost. In this work, in order to design efficient algorithms, we consider various alternative formulations, such as unconstrained formulation, primal-dual formulation, or conic formulation to develop group-sparsity promoted solvers. First, the consensus alternating direction method of multipliers (C-ADMM) is applied. Then, iterative algorithms for the BPDN formulation is proposed by combining the Nesterov smoothing technique with accelerated proximal gradient method, and the convergence analysis of the method is conducted as well. We also developed a variant of EGT (Excessive Gap Technique)-based primal-dual method to systematically reduce the smoothing parameter sequentially. Finally, we propose algorithms for quadratically constrained L2-L1 mixed norm minimization problem by using the smoothed dual conic optimization (SDCO) and continuation technique. The performance of accuracy and convergence for all the proposed methods are demonstrated in the numerical simulations.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here