Linearly Converging Quasi Branch and Bound Algorithms for Global Rigid Registration

ICCV 2019  ·  Nadav Dym, Shahar Ziv Kovalsky ·

In recent years, several branch-and-bound (BnB) algorithms have been proposed to globally optimize rigid registration problems. In this paper, we suggest a general framework to improve upon the BnB approach, which we name Quasi BnB. Quasi BnB replaces the linear lower bounds used in BnB algorithms with quadratic quasi-lower bounds which are based on the quadratic behavior of the energy in the vicinity of the global minimum. While quasi-lower bounds are not truly lower bounds, the Quasi-BnB algorithm is globally optimal. In fact we prove that it exhibits linear convergence -- it achieves $\epsilon$-accuracy in $~O(\log(1/\epsilon)) $ time while the time complexity of other rigid registration BnB algorithms is polynomial in $1/\epsilon $. Our experiments verify that Quasi-BnB is significantly more efficient than state-of-the-art BnB algorithms, especially for problems where high accuracy is desired.

PDF Abstract ICCV 2019 PDF ICCV 2019 Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here