Link Prediction on Latent Heterogeneous Graphs

21 Feb 2023  ·  Trung-Kien Nguyen, Zemin Liu, Yuan Fang ·

On graph data, the multitude of node or edge types gives rise to heterogeneous information networks (HINs). To preserve the heterogeneous semantics on HINs, the rich node/edge types become a cornerstone of HIN representation learning. However, in real-world scenarios, type information is often noisy, missing or inaccessible. Assuming no type information is given, we define a so-called latent heterogeneous graph (LHG), which carries latent heterogeneous semantics as the node/edge types cannot be observed. In this paper, we study the challenging and unexplored problem of link prediction on an LHG. As existing approaches depend heavily on type-based information, they are suboptimal or even inapplicable on LHGs. To address the absence of type information, we propose a model named LHGNN, based on the novel idea of semantic embedding at node and path levels, to capture latent seman- tics on and between nodes. We further design a personalization function to modulate the heterogeneous contexts conditioned on their latent semantics w.r.t. the target node, to enable finer-grained aggregation. Finally, we conduct extensive experiments on four benchmark datasets, and demonstrate the superior performance of LHGNN.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here