LIPN-UAM at EmoInt-2017:Combination of Lexicon-based features and Sentence-level Vector Representations for Emotion Intensity Determination

WS 2017 Davide BuscaldiBelem Priego

This paper presents the combined LIPN-UAM participation in the WASSA 2017 Shared Task on Emotion Intensity. In particular, the paper provides some highlights on the Tweetaneuse system that was presented to the shared task... (read more)

PDF Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet