LMLFM: Longitudinal Multi-Level Factorization Machine

11 Nov 2019  ·  Junjie Liang, Dongkuan Xu, Yiwei Sun, Vasant Honavar ·

We consider the problem of learning predictive models from longitudinal data, consisting of irregularly repeated, sparse observations from a set of individuals over time. Such data often exhibit {\em longitudinal correlation} (LC) (correlations among observations for each individual over time), {\em cluster correlation} (CC) (correlations among individuals that have similar characteristics), or both. These correlations are often accounted for using {\em mixed effects models} that include {\em fixed effects} and {\em random effects}, where the fixed effects capture the regression parameters that are shared by all individuals, whereas random effects capture those parameters that vary across individuals. However, the current state-of-the-art methods are unable to select the most predictive fixed effects and random effects from a large number of variables, while accounting for complex correlation structure in the data and non-linear interactions among the variables. We propose Longitudinal Multi-Level Factorization Machine (LMLFM), to the best of our knowledge, the first model to address these challenges in learning predictive models from longitudinal data. We establish the convergence properties, and analyze the computational complexity, of LMLFM. We present results of experiments with both simulated and real-world longitudinal data which show that LMLFM outperforms the state-of-the-art methods in terms of predictive accuracy, variable selection ability, and scalability to data with large number of variables. The code and supplemental material is available at \url{https://github.com/junjieliang672/LMLFM}.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here