Local Density Estimation in High Dimensions

An important question that arises in the study of high dimensional vector representations learned from data is: given a set D of vectors and a query q, estimate the number of points within a specified distance threshold of q. Our algorithm uses locality sensitive hashing to preprocess the data to accurately and efficiently estimate the answers to such questions via an unbiased estimator that uses importance sampling... (read more)

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet