Local Information Opponent Modelling Using Variational Autoencoders

28 Sep 2020  ·  Georgios Papoudakis, Filippos Christianos, Stefano V Albrecht ·

Modelling the behaviours of other agents (opponents) is essential for understanding how agents interact and making effective decisions. Existing methods for opponent modelling commonly assume knowledge of the local observations and chosen actions of the modelled opponents, which can significantly limit their applicability. We propose a new modelling technique based on variational autoencoders, which are trained to reconstruct the local actions and observations of the opponent based on embeddings which depend only on the local observations of the modelling agent (its observed world state, chosen actions, and received rewards). The embeddings are used to augment the modelling agent's decision policy which is trained via deep reinforcement learning; thus the policy does not require access to opponent observations. We provide a comprehensive evaluation and ablation study in diverse multi-agent tasks, showing that our method achieves comparable performance to an ideal baseline which has full access to opponent's information, and significantly higher returns than a baseline method which does not use the learned embeddings.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here