Local moment matching: A unified methodology for symmetric functional estimation and distribution estimation under Wasserstein distance

23 Feb 2018  ·  Yanjun Han, Jiantao Jiao, Tsachy Weissman ·

We present \emph{Local Moment Matching (LMM)}, a unified methodology for symmetric functional estimation and distribution estimation under Wasserstein distance. We construct an efficiently computable estimator that achieves the minimax rates in estimating the distribution up to permutation, and show that the plug-in approach of our unlabeled distribution estimator is "universal" in estimating symmetric functionals of discrete distributions. Instead of doing best polynomial approximation explicitly as in existing literature of functional estimation, the plug-in approach conducts polynomial approximation implicitly and attains the optimal sample complexity for the entropy, power sum and support size functionals.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here