Local Optimality and Generalization Guarantees for the Langevin Algorithm via Empirical Metastability

18 Feb 2018Belinda TzenTengyuan LiangMaxim Raginsky

We study the detailed path-wise behavior of the discrete-time Langevin algorithm for non-convex Empirical Risk Minimization (ERM) through the lens of metastability, adopting some techniques from Berglund and Gentz (2003. For a particular local optimum of the empirical risk, with an arbitrary initialization, we show that, with high probability, at least one of the following two events will occur: (1) the Langevin trajectory ends up somewhere outside the $\varepsilon$-neighborhood of this particular optimum within a short recurrence time; (2) it enters this $\varepsilon$-neighborhood by the recurrence time and stays there until a potentially exponentially long escape time... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet