Local Rules for Global MAP: When Do They Work ?

NeurIPS 2009  ·  Kyomin Jung, Pushmeet Kohli, Devavrat Shah ·

We consider the question of computing Maximum A Posteriori (MAP) assignment in an arbitrary pair-wise Markov Random Field (MRF). We present a randomized iterative algorithm based on simple local updates. The algorithm, starting with an arbitrary initial assignment, updates it in each iteration by first, picking a random node, then selecting an (appropriately chosen) random local neighborhood and optimizing over this local neighborhood. Somewhat surprisingly, we show that this algorithm finds a near optimal assignment within $2n\ln n$ iterations on average and with high probability for {\em any} $n$ node pair-wise MRF with {\em geometry} (i.e. MRF graph with polynomial growth) with the approximation error depending on (in a reasonable manner) the geometric growth rate of the graph and the average radius of the local neighborhood -- this allows for a graceful tradeoff between the complexity of the algorithm and the approximation error. Through extensive simulations, we show that our algorithm finds extremely good approximate solutions for various kinds of MRFs with geometry.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here