Local Supermassive Black Holes, Relics of Active Galactic Nuclei and the X-ray Background

28 Nov 2003  ·  A. Marconi, G. Risaliti, R. Gilli, L. K. Hunt, R. Maiolino, M. Salvati ·

We quantify the importance of mass accretion during AGN phases in the growth of supermassive black holes (BH) by comparing the mass function of black holes in the local universe with that expected from AGN relics, which are black holes grown entirely with mass accretion during AGN phases. The local BH mass function (BHMF) is estimated by applying the well-known correlations between BH mass, bulge luminosity and stellar velocity dispersion to galaxy luminosity and velocity functions. The density of BH's in the local universe is 4.6 (-1.4; +1.9) (h/0.7)^2 10^5 Msun Mpc^-3. The relic BHMF is derived from the continuity equation with the only assumption that AGN activity is due to accretion onto massive BH's and that merging is not important. We find that the relic BHMF at z=0 is generated mainly at z<3. Moreover, the BH growth is anti-hierarchical in the sense that smaller BH's (MBH< 10^7 Msun) grow at lower redshifts (z<1) with respect to more massive one's (z~1-3). Unlike previous work, we find that the BHMF of AGN relics is perfectly consistent with the local BHMF indicating the local BH's were mainly grown during AGN activity. This agreement is obtained while satisfying, at the same time, the constraints imposed from the X-ray background. The comparison with the local BHMF also suggests that the merging process is not important in shaping the relic BHMF, at least at low redshifts (z<3). Our analysis thus suggests the following scenario: local black holes grew during AGN phases in which accreting matter was converted into radiation with efficiencies epsilon = 0.04-0.16 and emitted at a fraction lambda = 0.1-1.7 of the Eddington luminosity. The average total lifetime of these active phases ranges from ~4.5 10^8 yr for MBH< 10^8 Msun to ~1.5 10^8 yr for MBH> 10^9 Msun. (abridged)

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here