Localizing Bugs in Program Executions with Graphical Models

NeurIPS 2009 Laura DietzValentin DallmeierAndreas ZellerTobias Scheffer

We devise a graphical model that supports the process of debugging software by guiding developers to code that is likely to contain defects. The model is trained using execution traces of passing test runs; it reflects the distribution over transitional patterns of code positions... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet