Locally Private Gaussian Estimation

We study a basic private estimation problem: each of $n$ users draws a single i.i.d. sample from an unknown Gaussian distribution, and the goal is to estimate the mean of this Gaussian distribution while satisfying local differential privacy for each user. Informally, local differential privacy requires that each data point is individually and independently privatized before it is passed to a learning algorithm. Locally private Gaussian estimation is therefore difficult because the data domain is unbounded: users may draw arbitrarily different inputs, but local differential privacy nonetheless mandates that different users have (worst-case) similar privatized output distributions. We provide both adaptive two-round solutions and nonadaptive one-round solutions for locally private Gaussian estimation. We then partially match these upper bounds with an information-theoretic lower bound. This lower bound shows that our accuracy guarantees are tight up to logarithmic factors for all sequentially interactive $(\varepsilon,\delta)$-locally private protocols.

PDF Abstract NeurIPS 2019 PDF NeurIPS 2019 Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here