Log-concave sampling: Metropolis-Hastings algorithms are fast

8 Jan 2018  ·  Raaz Dwivedi, Yuansi Chen, Martin J. Wainwright, Bin Yu ·

We consider the problem of sampling from a strongly log-concave density in $\mathbb{R}^d$, and prove a non-asymptotic upper bound on the mixing time of the Metropolis-adjusted Langevin algorithm (MALA). The method draws samples by simulating a Markov chain obtained from the discretization of an appropriate Langevin diffusion, combined with an accept-reject step... Relative to known guarantees for the unadjusted Langevin algorithm (ULA), our bounds show that the use of an accept-reject step in MALA leads to an exponentially improved dependence on the error-tolerance. Concretely, in order to obtain samples with TV error at most $\delta$ for a density with condition number $\kappa$, we show that MALA requires $\mathcal{O} \big(\kappa d \log(1/\delta) \big)$ steps, as compared to the $\mathcal{O} \big(\kappa^2 d/\delta^2 \big)$ steps established in past work on ULA. We also demonstrate the gains of MALA over ULA for weakly log-concave densities. Furthermore, we derive mixing time bounds for the Metropolized random walk (MRW) and obtain $\mathcal{O}(\kappa)$ mixing time slower than MALA. We provide numerical examples that support our theoretical findings, and demonstrate the benefits of Metropolis-Hastings adjustment for Langevin-type sampling algorithms. read more

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here