Power-law escape rate of SGD

20 May 2021  ·  Takashi Mori, Liu Ziyin, Kangqiao Liu, Masahito Ueda ·

Stochastic gradient descent (SGD) undergoes complicated multiplicative noise for the mean-square loss. We use this property of SGD noise to derive a stochastic differential equation (SDE) with simpler additive noise by performing a random time change. Using this formalism, we show that the log loss barrier $\Delta\log L=\log[L(\theta^s)/L(\theta^*)]$ between a local minimum $\theta^*$ and a saddle $\theta^s$ determines the escape rate of SGD from the local minimum, contrary to the previous results borrowing from physics that the linear loss barrier $\Delta L=L(\theta^s)-L(\theta^*)$ decides the escape rate. Our escape-rate formula strongly depends on the typical magnitude $h^*$ and the number $n$ of the outlier eigenvalues of the Hessian. This result explains an empirical fact that SGD prefers flat minima with low effective dimensions, giving an insight into implicit biases of SGD.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.