Logarithmic Regret for Online Gradient Descent Beyond Strong Convexity

13 Feb 2018  ·  Dan Garber ·

Hoffman's classical result gives a bound on the distance of a point from a convex and compact polytope in terms of the magnitude of violation of the constraints. Recently, several results showed that Hoffman's bound can be used to derive strongly-convex-like rates for first-order methods for \textit{offline} convex optimization of curved, though not strongly convex, functions, over polyhedral sets... In this work, we use this classical result for the first time to obtain faster rates for \textit{online convex optimization} over polyhedral sets with curved convex, though not strongly convex, loss functions. We show that under several reasonable assumptions on the data, the standard \textit{Online Gradient Descent} algorithm guarantees logarithmic regret. To the best of our knowledge, the only previous algorithm to achieve logarithmic regret in the considered settings is the \textit{Online Newton Step} algorithm which requires quadratic (in the dimension) memory and at least quadratic runtime per iteration, which greatly limits its applicability to large-scale problems. In particular, our results hold for \textit{semi-adversarial} settings in which the data is a combination of an arbitrary (adversarial) sequence and a stochastic sequence, which might provide reasonable approximation for many real-world sequences, or under a natural assumption that the data is low-rank. We demonstrate via experiments that the regret of OGD is indeed comparable to that of ONS (and even far better) on curved though not strongly-convex losses. read more

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here