Long-Context Autoregressive Video Modeling with Next-Frame Prediction
Long-context video modeling is essential for enabling generative models to function as world simulators, as they must maintain temporal coherence over extended time spans. However, most existing models are trained on short clips, limiting their ability to capture long-range dependencies, even with test-time extrapolation. While training directly on long videos is a natural solution, the rapid growth of vision tokens makes it computationally prohibitive. To support exploring efficient long-context video modeling, we first establish a strong autoregressive baseline called Frame AutoRegressive (FAR). FAR models temporal dependencies between continuous frames, converges faster than video diffusion transformers, and outperforms token-level autoregressive models. Based on this baseline, we observe context redundancy in video autoregression. Nearby frames are critical for maintaining temporal consistency, whereas distant frames primarily serve as context memory. To eliminate this redundancy, we propose the long short-term context modeling using asymmetric patchify kernels, which apply large kernels to distant frames to reduce redundant tokens, and standard kernels to local frames to preserve fine-grained detail. This significantly reduces the training cost of long videos. Our method achieves state-of-the-art results on both short and long video generation, providing an effective baseline for long-context autoregressive video modeling.
PDF Abstract