Long-Distance Dependencies Don't Have to Be Long: Simplifying through Provably (Approximately) Optimal Permutations

ACL 2019  ·  Rishi Bommasani ·

Neural models at the sentence level often operate on the constituent words/tokens in a way that encodes the inductive bias of processing the input in a similar fashion to how humans do. However, there is no guarantee that the standard ordering of words is computationally efficient or optimal... To help mitigate this, we consider a dependency parse as a proxy for the inter-word dependencies in a sentence and simplify the sentence with respect to combinatorial objectives imposed on the sentence-parse pair. The associated optimization results in permuted sentences that are provably (approximately) optimal with respect to minimizing dependency parse lengths and that are demonstrably simpler. We evaluate our general-purpose permutations within a fine-tuning schema for the downstream task of subjectivity analysis. Our fine-tuned baselines reflect a new state of the art for the SUBJ dataset and the permutations we introduce lead to further improvements with a 2.0{\%} increase in classification accuracy (absolute) and a 45{\%} reduction in classification error (relative) over the previous state of the art. read more

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here