Paper

Long Duration Battery Sizing, Siting, and Operation Under Wildfire Risk Using Progressive Hedging

Battery sizing and siting problems are computationally challenging due to the need to make long-term planning decisions that are cognizant of short-term operational decisions. This paper considers sizing, siting, and operating batteries in a power grid to maximize their benefits, including price arbitrage and load shed mitigation, during both normal operations and periods with high wildfire ignition risk. We formulate a multi-scenario optimization problem for long duration battery storage while considering the possibility of load shedding during Public Safety Power Shutoff (PSPS) events that de-energize lines to mitigate severe wildfire ignition risk. To enable a computationally scalable solution of this problem with many scenarios of wildfire risk and power injection variability, we develop a customized temporal decomposition method based on a progressive hedging framework. Extending traditional progressive hedging techniques, we consider coupling in both placement variables across all scenarios and state-of-charge variables at temporal boundaries. This enforces consistency across scenarios while enabling parallel computations despite both spatial and temporal coupling. The proposed decomposition facilitates efficient and scalable modeling of a full year of hourly operational decisions to inform the sizing and siting of batteries. With this decomposition, we model a year of hourly operational decisions to inform optimal battery placement for a 240-bus WECC model in under 70 minutes of wall-clock time.

Results in Papers With Code
(↓ scroll down to see all results)