Long-Tail Class Incremental Learning via Independent Sub-prototype Construction

CVPR 2024  ·  Xi Wang, Xu Yang, Jie Yin, Kun Wei, Cheng Deng ·

Long-tail class incremental learning (LT-CIL) is designed to perpetually acquire novel knowledge from an imbalanced and perpetually evolving data stream while ensuring the retention of previously acquired knowledge. The existing method only re-balances data distribution and ignores exploring the potential relationship between different samples causing non-robust representations and even severe forgetting in classes with few samples. In this paper we constructed two parallel spaces simultaneously: 1) Sub-prototype space and 2) Reminiscence space to learn robust representations while alleviating forgetfulness. Concretely we advance the concept of the sub-prototype space which amalgamates insights from diverse classes. This integration facilitates the mutual complementarity of varied knowledge thereby augmenting the attainment of more robust representations. Furthermore we introduce the reminiscence space which encapsulates each class distribution aiming to constraint model optimization and mitigate the phenomenon of forgetting. The tandem utilization of the two parallel spaces effectively alleviates the adverse consequences associated with imbalanced data distribution preventing forgetting without needing replay examples. Extensive experiments demonstrate that our method achieves state-of-the-art performance on various benchmarks.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here