Lost in Embedding Space: Explaining Cross-Lingual Task Performance with Eigenvalue Divergence

30 Jan 2020Haim DubossarskyIvan VulićRoi ReichartAnna Korhonen

Performance in cross-lingual NLP tasks is impacted by the (dis)similarity of languages at hand: e.g., previous work has suggested there is a connection between the expected success of bilingual lexicon induction (BLI) and the assumption of (approximate) isomorphism between monolingual embedding spaces. In this work, we present a large-scale study focused on the correlations between language similarity and task performance, covering thousands of language pairs and four different tasks: BLI, machine translation, parsing, and POS tagging... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet