Low Complexity Joint Impairment Mitigation of I/Q Modulator and PA Using Neural Networks

6 Apr 2021  ·  Yibo Wu, Ulf Gustavsson, Alexandre Graell i Amat, Henk Wymeersch ·

Neural networks (NNs) for multiple hardware impairments mitigation of a realistic direct conversion transmitter are impractical due to high computational complexity. We propose two methods to reduce complexity without significant performance penalty. We first propose a novel attention residual learning NN, referred to as attention residual real-valued time-delay neural network (ARDEN), where trainable neuron-wise shortcut connections between the input and output layers allow to keep the attention always active. Furthermore, we implement a NN pruning algorithm that gradually removes connections corresponding to minimal weight magnitudes in each layer. Simulation and experimental results show that ARDEN with pruning achieves better performance for compensating frequency-dependent quadrature imbalance and power amplifier nonlinearity than other NN-based and Volterra-based models, while requiring less or similar complexity.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods