Low-degree phase transitions for detecting a planted clique in sublinear time

8 Feb 2024  ·  Jay Mardia, Kabir Aladin Verchand, Alexander S. Wein ·

We consider the problem of detecting a planted clique of size $k$ in a random graph on $n$ vertices. When the size of the clique exceeds $\Theta(\sqrt{n})$, polynomial-time algorithms for detection proliferate. We study faster -- namely, sublinear time -- algorithms in the high-signal regime when $k = \Theta(n^{1/2 + \delta})$, for some $\delta > 0$. To this end, we consider algorithms that non-adaptively query a subset $M$ of entries of the adjacency matrix and then compute a low-degree polynomial function of the revealed entries. We prove a computational phase transition for this class of non-adaptive low-degree algorithms: under the scaling $\lvert M \rvert = \Theta(n^{\gamma})$, the clique can be detected when $\gamma > 3(1/2 - \delta)$ but not when $\gamma < 3(1/2 - \delta)$. As a result, the best known runtime for detecting a planted clique, $\widetilde{O}(n^{3(1/2-\delta)})$, cannot be improved without looking beyond the non-adaptive low-degree class. Our proof of the lower bound -- based on bounding the conditional low-degree likelihood ratio -- reveals further structure in non-adaptive detection of a planted clique. Using (a bound on) the conditional low-degree likelihood ratio as a potential function, we show that for every non-adaptive query pattern, there is a highly structured query pattern of the same size that is at least as effective.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here