Low Dimensional Explicit Feature Maps

Approximating non-linear kernels by finite-dimensional feature maps is a popular approach for speeding up training and evaluation of support vector machines or to encode information into efficient match kernels. We propose a novel method of data independent construction of low dimensional feature maps... (read more)

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet