Low-rank Convex/Sparse Thermal Matrix Approximation for Infrared-based Diagnostic System

14 Oct 2020  ·  Bardia Yousefi, Clemente Ibarra Castanedo, Xavier P. V. Maldague ·

Active and passive thermography are two efficient techniques extensively used to measure heterogeneous thermal patterns leading to subsurface defects for diagnostic evaluations. This study conducts a comparative analysis on low-rank matrix approximation methods in thermography with applications of semi-, convex-, and sparse- non-negative matrix factorization (NMF) methods for detecting subsurface thermal patterns. These methods inherit the advantages of principal component thermography (PCT) and sparse PCT, whereas tackle negative bases in sparse PCT with non-negative constraints, and exhibit clustering property in processing data. The practicality and efficiency of these methods are demonstrated by the experimental results for subsurface defect detection in three specimens (for different depth and size defects) and preserving thermal heterogeneity for distinguishing breast abnormality in breast cancer screening dataset (accuracy of 74.1%, 75.8%, and 77.8%).

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods