Low-rank optimization for distance matrix completion

24 Apr 2013  ·  B. Mishra, G. Meyer, R. Sepulchre ·

This paper addresses the problem of low-rank distance matrix completion. This problem amounts to recover the missing entries of a distance matrix when the dimension of the data embedding space is possibly unknown but small compared to the number of considered data points. The focus is on high-dimensional problems. We recast the considered problem into an optimization problem over the set of low-rank positive semidefinite matrices and propose two efficient algorithms for low-rank distance matrix completion. In addition, we propose a strategy to determine the dimension of the embedding space. The resulting algorithms scale to high-dimensional problems and monotonically converge to a global solution of the problem. Finally, numerical experiments illustrate the good performance of the proposed algorithms on benchmarks.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here