Low-Rank Tensor Completion: A Pseudo-Bayesian Learning Approach

ICCV 2017 Wei ChenNan Song

Low rank tensor completion, which solves a linear inverse problem with the principle of parsimony, is a powerful technique used in many application domains in computer vision and pattern recognition. As a surrogate function of the matrix rank that is non-convex and discontinuous, the nuclear norm is often used instead to derive efficient algorithms for recovering missing information in matrices and higher order tensors... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet