Low-Resource Language Modelling of South African Languages

1 Apr 2021  ·  Stuart Mesham, Luc Hayward, Jared Shapiro, Jan Buys ·

Language models are the foundation of current neural network-based models for natural language understanding and generation. However, research on the intrinsic performance of language models on African languages has been extremely limited, which is made more challenging by the lack of large or standardised training and evaluation sets that exist for English and other high-resource languages. In this paper, we evaluate the performance of open-vocabulary language models on low-resource South African languages, using byte-pair encoding to handle the rich morphology of these languages. We evaluate different variants of n-gram models, feedforward neural networks, recurrent neural networks (RNNs), and Transformers on small-scale datasets. Overall, well-regularized RNNs give the best performance across two isiZulu and one Sepedi datasets. Multilingual training further improves performance on these datasets. We hope that this research will open new avenues for research into multilingual and low-resource language modelling for African languages.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here