Low-Variance and Zero-Variance Baselines for Extensive-Form Games

ICML 2020  ·  Trevor Davis, Martin Schmid, Michael Bowling ·

Extensive-form games (EFGs) are a common model of multi-agent interactions with imperfect information. State-of-the-art algorithms for solving these games typically perform full walks of the game tree that can prove prohibitively slow in large games. Alternatively, sampling-based methods such as Monte Carlo Counterfactual Regret Minimization walk one or more trajectories through the tree, touching only a fraction of the nodes on each iteration, at the expense of requiring more iterations to converge due to the variance of sampled values. In this paper, we extend recent work that uses baseline estimates to reduce this variance. We introduce a framework of baseline-corrected values in EFGs that generalizes the previous work. Within our framework, we propose new baseline functions that result in significantly reduced variance compared to existing techniques. We show that one particular choice of such a function --- predictive baseline --- is provably optimal under certain sampling schemes. This allows for efficient computation of zero-variance value estimates even along sampled trajectories.

PDF Abstract ICML 2020 PDF
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here