Lower Bound On the Computational Complexity of Discounted Markov Decision Problems

20 May 2017 Yi-Chen Chen Mengdi Wang

We study the computational complexity of the infinite-horizon discounted-reward Markov Decision Problem (MDP) with a finite state space $|\mathcal{S}|$ and a finite action space $|\mathcal{A}|$. We show that any randomized algorithm needs a running time at least $\Omega(|\mathcal{S}|^2|\mathcal{A}|)$ to compute an $\epsilon$-optimal policy with high probability... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet