Lower Bounds for Compressed Sensing with Generative Models

6 Dec 2019Akshay KamathSushrut KarmalkarEric Price

The goal of compressed sensing is to learn a structured signal $x$ from a limited number of noisy linear measurements $y \approx Ax$. In traditional compressed sensing, "structure" is represented by sparsity in some known basis... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet