LS3: Latent Space Safe Sets for Long-Horizon Visuomotor Control of Sparse Reward Iterative Tasks

Reinforcement learning (RL) has shown impressive success in exploring high-dimensional environments to learn complex tasks, but can often exhibit unsafe behaviors and require extensive environment interaction when exploration is unconstrained. A promising strategy for learning in dynamically uncertain environments is requiring that the agent can robustly return to learned safe sets, where task success (and therefore safety) can be guaranteed. While this approach has been successful in low-dimensions, enforcing this constraint in environments with visual observations is exceedingly challenging. We present a novel continuous representation for safe sets by framing it as a binary classification problem in a learned latent space, which flexibly scales to image observations. We then present a new algorithm, Latent Space Safe Sets (LS3), which uses this representation for long-horizon tasks with sparse rewards. We evaluate LS3 on 4 domains, including a challenging sequential pushing task in simulation and a physical cable routing task. We find that LS3 can use prior task successes to restrict exploration and learn more efficiently than prior algorithms while satisfying constraints. See https://tinyurl.com/latent-ss for code and supplementary material.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here