LSBert: A Simple Framework for Lexical Simplification

25 Jun 2020  ·  Jipeng Qiang, Yun Li, Yi Zhu, Yunhao Yuan, Xindong Wu ·

Lexical simplification (LS) aims to replace complex words in a given sentence with their simpler alternatives of equivalent meaning, to simplify the sentence. Recently unsupervised lexical simplification approaches only rely on the complex word itself regardless of the given sentence to generate candidate substitutions, which will inevitably produce a large number of spurious candidates... In this paper, we propose a lexical simplification framework LSBert based on pretrained representation model Bert, that is capable of (1) making use of the wider context when both detecting the words in need of simplification and generating substitue candidates, and (2) taking five high-quality features into account for ranking candidates, including Bert prediction order, Bert-based language model, and the paraphrase database PPDB, in addition to the word frequency and word similarity commonly used in other LS methods. We show that our system outputs lexical simplifications that are grammatically correct and semantically appropriate, and obtains obvious improvement compared with these baselines, outperforming the state-of-the-art by 29.8 Accuracy points on three well-known benchmarks. read more

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods